

Supplement of

Molecular composition and volatility of isoprene photochemical oxidation secondary organic aerosol under low- and high-NO_x conditions

Emma L. D'Ambro et al.

Correspondence to: Joel A. Thornton (thornton@atmos.uw.edu)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

Molecular composition and volatility of isoprene photochemical oxidation secondary organic aerosol under low and high NO_x conditions

Emma L. D'Ambro¹, Ben H. Lee², Jiumeng Liu³, John E. Shilling^{3,4}, Cassandra J. Gaston⁵, Felipe D. Lopez-Hilfiker⁶, Siegfried Schobesberger², Rahul A. Zaveri³, Claudia Mohr⁷, Anna Lutz⁸, Zhenfa Zhang⁹, Avram Gold⁹, Jason D. Surratt⁹, Jean C. Rivera-Rios¹⁰, Frank N. Keutsch¹⁰, Joel A. Thornton²

¹Department of Chemistry, University of Washington, Seattle, WA, 98195, USA

²Department of Atmospheric Sciences, University of Washington, Seattle, WA, 98195, USA

³Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA

⁴Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99352, USA

⁵Rosenstiel School of Marine & Atmospheric Science, University of Miami, FL, 33149, USA

⁶Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Zurich, Switzerland

⁷Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany

⁸Department of Chemistry, Atmospheric Science, University of Gothenburg, Gothenburg, Sweden

⁹Department of Environmental Sciences and Engineering, Gillings School of Global and Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA

¹⁰John A. Paulson School of Engineering and Applied Sciences and Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA

Correspondence to: Joel A. Thornton (thornton@atmos.uw.edu)

Figure 1. Overview of the 2014 and 2015 measurements taken at PNNL. **A.** Data from the 2014 campaign, **B.** data from the 2015 campaign. The top rows show gas-phase compounds measured by the PTR-MS and FIGAERO-CIMS, as well as input concentrations of H_2O_2 , NO, and isoprene. Middle rows show the OA as measured by the AMS. Steady state periods are shown within magenta circles, AMS blanks as black squares. Select particle phase species measured by the FIGAERO-CIMS are in the bottom rows. Grey shaded areas in each column indicate when chamber lights were off for chamber cleaning and a dark NO₃ experiment (in 2014) which is not discussed here. Note that the axis limits are not the same due to a wide range in concentrations across years, while $C_5H_{12}O_5$ has been enhanced 5x and $C_5H_{11}NO_7$ has been enhanced 20x in the bottom rows to clearly show the behavior of each species on the same axis. This figure has been enlarged from what is in the main text in order to more clearly display detail.